## Л.В. Ефремов, М.Ю. Иванов

## ОСОБЕННОСТИ КРУТИЛЬНЫХ КОЛЕБАНИЙ ВИНТО-РУЛЕВЫХ КОЛОНОК С ЭЛЕКТРИЧЕСКИМ ПРИВОДОМ

При расчете крутильных колебаний дизельных силовых установок основным элементом их крутильной схемы является группа масс дизеля. Этот элемент располагается в начале системы и именно в нем возникают возмущающие моменты, которые создают опасные напряжения в элементах установки. Принято считать, что возмущающие моменты от других возможных источников (например, от гребного винта) существенно ниже возмущающих моментов дизеля и поэтому в расчетах ими обычно пренебрегают.

При наличия в системе зубчатых передач часть системы за редуктором приводиться к частоте вращения двигателя. При этом порядки возмущающего момента дизеля не требуют редуцирования.

Однако указанные традиции расчета не ответствуют особенностям конструкции силовых установок нового типа – винто–рулевых колонок (ВРК) с приводом от электродвигателя.

Эти особенности были выявлены при экспертизе расчетов крутильных колебаний (TVA-Torsional Vibration Analysis), выполненных фирмой Вулкан по заказу проектанта ВРК с применением метода Хольцера (а не «метода цепных дробей» [4], принятого в отечественном судостроении для расчета свободных колебаний).

Поскольку в отчете не была приведена методика указанных расчетов (связанных с оценкой амплитуд), то была поставлена задача обоснования собственных алгоритмов и программ поверочных расчетов крутильных колебаний ВРК на основе метода Хольцера.

Для решения задачи были использованы данные о расчете ВРК типа AKBAMACTEP, имеющих следующие характеристики.

Электродвигатель ВРК мощностью 2000 киловатт при 1000 1/мин работает в диапазоне от 0 до 1260 1/мин по винтовой характеристике. Редуктор имеет передаточное отношение на винт 0.2078. Между электродвигателем и редуктором установлена упругая фирмы Вулкан марки RATO-DS 27D5 (см. рис. 1).

Следует обратить внимание на то, что в этой установке колебания возбуждаются не электродвигателем, а возмущающими моментами гребного винта первого и второго лопастного порядка. В отчете показано, что первый лопастной порядок равен 0.8312, а второй -1.6623. Образование таких дробных порядков требует следующего разъяснения. Дело в том, что речь идет о порядках возмущений от четырех лопастного гребного винта, которые равны 4 для первого лопастного порядка и 8 – для второго лопастного порядка при частоте вращения гребного винта. Расчет же крутильных колебаний будет выполняться для частоты вращения электродвигателя и поэтому эти порядки надо привести к этим оборотам путем умножения на передаточное отношение, равное 0.2078. Отсюда следует, что 4\*0.2078 = 0.8312 и 8\*0.2078 = 1.6623.



Рисунок 1. Чертеж упругой муфты RATO-DS 27D5

При этом амплитуда гармонического возбуждения принята 6 % и 2 % от передаваемого крутящего момента в движителе соответственно. Важно отметить, что при векторном суммировании амплитуд этих гармоник используется их алгебраическая, а не геометрическая сумма. Это существенно упрощает расчеты при сохранении приемлемой достоверности результата, как было показано в работе [1].

В фирменном расчете приводится таблица основных характеристик упруго-массовой системы для двух режимов включения ВРК. Таблица содержит данные о номере и названии элемента, моменте инерции массы, кг м<sup>2</sup>, жесткость (а не податливость!!) элемента между массами, МНм/рад, а так же - о передаточном отношении.

На фрагменте 1 приводится копия этой таблицы, которая включена в разработанную нами программу расчета для Регистра.

Следует отметить следующие особенности этой 22-массовой системы данного ВРК.

Во-первых, в составе масс (столбец 1) имеются элементы с нулевыми значениями масс (2, 6, 8 и др.), что связано с необходимостью оценки эластических моментов в зубчатых или шлицевых соединениях. Отметим, что введение таких элементов не приводят к усложнению расчетов.

| B0 | =              |                       |                 |        |
|----|----------------|-----------------------|-----------------|--------|
|    | 0              | 1                     | 2               | 3      |
| 0  | "Элемент"      | "МИМ, кгм2"           | "ЖСТК, Мнм/рад" | "ПО"   |
| 1  | "Элдвиг"       | 274.68                | "inf"           | 1      |
| 2  | "Вал"          | 0                     | 4.02            | 1      |
| 3  | "Муфта (1)"    | 37.9                  | 0.21            | 1      |
| 4  | "Муфта (2)"    | 7.1                   | "inf"           | 1      |
| 5  | "Ф ланец"      | 0.91                  | "inf"           | 1      |
| 6  | "Вал"          | 0                     | 0.89            | 1      |
| 7  | "Ф ланец"      | 3.02                  | "inf"           | 1      |
| 8  | "Вал"          | 0                     | 3.55            | 1      |
| 9  | "Ф ланец"      | 6                     | "inf"           | 1      |
| 10 | "Вал"          | 0                     | 17.37           | 1      |
| 11 | "Колесо, z=24" | 4.2                   | "inf"           | 1      |
| 12 | "Колесо, z=33" | 14.66                 | "inf"           | 0.7273 |
| 13 | "Вал"          | 0                     | 12.1            | 0.7273 |
| 14 | "Зуб"          | 4.38                  | "inf"           | 0.7273 |
| 15 | "Вал"          | 0                     | 69.93           | 0.7273 |
| 16 | "Зуб"          | 5.19                  | "inf"           | 0.7273 |
| 17 | "Вал"          | 0                     | 8.34            | 0.7273 |
| 18 | "Колесо, z=14" | 5.16                  | "inf"           | 0.7273 |
| 19 | "Колесо, z=49" | 226.4                 | "inf"           | 0.2078 |
| 20 | "Вал"          | 0                     | 63.76           | 0.2078 |
| 21 | "Ф ланец"      | 7.1                   | "inf"           | 0.2078 |
| 22 | "Винт"         | 1.413·10 <sup>3</sup> | "inf"           | 0.2078 |

## Фрагмент 1

Во-вторых, по той же причине в составе упругих соединений масс так же введено 12 участков с бесконечной «Infinite» жесткостью (т.е. с нулевой податливостью). Напомним, что величины жесткости по методике [1] надо преобразовать в податливость, как обратную величину жесткости.

В третьих – для элемента № 3 «Муфта 1» применена линейная характеристика, поскольку она составляет постоянную величину 0.210 МНм/рад при всех долевых значениях крутящего момента. В общем случае податливость упругих резинометаллических муфт может быть нелинейной величиной, т.е. зависящей от передаваемого крутящего момента. Это значительно и не оправдано усложнило бы расчетные процедуры.

Четвертая особенность заключается в том, что первый номер жесткости, так же как в нашей методике [1], совпадает с номером

массы ее присоединения.

В таблице не показаны два последних столбца с характеристиками демпфирования элементов. В нашей методике [1] они добавлены в процедуру приведения системы к безразмерному виду.

Рассмотренная таблица системы на фрагменте 1 нужна для расчета свободных колебаний по методу Хольцера как в фирменном, так и нашем (см. фрагмент 2) расчете .

| $M(D) \coloneqq$ | a ¬ 1                                                                                                        |  |  |
|------------------|--------------------------------------------------------------------------------------------------------------|--|--|
|                  | $M_1 \neg D x q_1$                                                                                           |  |  |
|                  | for il 2 ks                                                                                                  |  |  |
|                  | $\mathbf{a}_{i} \neg 1 - \mathbf{\hat{a}}_{i=2}^{i} \left( \mathbf{M}_{i-1} \times \mathbf{E}_{i-1} \right)$ |  |  |
|                  | $M_i \neg a_i X D X q_i + M_{i-1}$                                                                           |  |  |
|                  | return M <sub>i</sub>                                                                                        |  |  |

| l |
|---|
|   |

| Узлы | TVA     | Наш расчет | %      |
|------|---------|------------|--------|
| 1    | 416.23  | 416.341    | 0.0267 |
| 2    | 2328.6  | 2329.172   | 0.0246 |
| 3    | 3359.93 | 3360.136   | 0.0061 |
| 4    | 3763.02 | 3765.977   | 0.0785 |
| 5    | 6680.9  | 6680.943   | 0.0006 |

## Фрагмент 2

Результаты расчета свободных колебаний шести форм практически совпали (см. таблицу 1), что подтверждает корректность разработанной методики [1].

При оценке результатов расчета свободных колебаний данного ВРК были определены резонансные частоты лопастных порядков  $n_{fa}$ , которые могут попасть в рабочий диапазон вращения двигателя

Эта задача решается по известному выражению

$$n_{fn} = N_f / n , \qquad (1)$$

где  $N_f$  - частота свободных колебаний *f* – й формы, кол/мин, *n* - порядок колебаний. Результаты расчета сведены в табл. 2.

Таблица 2

| Howop   |         | Резонансные об/мин для форм колебаний |           |           |           |          |
|---------|---------|---------------------------------------|-----------|-----------|-----------|----------|
| помер   | Порядок | 1                                     | 2         | 3         | 4         | 5        |
| порядка |         | (416.23)                              | (2328.60) | (3359.93) | (3763.02) | (6680.9) |
| 1       | 0.8312  | 500.76                                | 2801.49   | 4042.26   | 4527.20   | 8037.6   |
| 2       | 1.6624  | 250.38                                | 1400.78   | 2021.13   | 2263.60   | 4018.8   |

Данные таблицы подтверждают, что практическое значение имеют только резонансы лопастных порядков одноузловой формы при 500.76 об/мин (первый лопастной порядок) и 250.38 об/мин (второй

лопастной порядок). Резонансы от других форм не попадают в рабочий диапазон оборотов и их рассматривать далее не следует.

Разработанная программа позволила оценить основные характеристики этой формы свободных колебаний (фрагмент 3).



Фрагмент 3

После расчета свободных колебаний были определены амплитуды первой массы систем при резонансах лопастных порядков, а затем сделана оценка эластических моментов от резонансных и вынужденных колебаний тех же порядков в наиболее напряженных участках системы: № 3 - «Муфта 1», № 11 - «зубчатое зацепление z = 24» и № 18 - «зубчатое зацепление z = 14» (по таблице фрагмента 1).

Для упругой муфты типа Вулкан RATO-DS 27D5 (элемент № 3) кроме того рассчитывалась и оценивалась величина так называемой потери мощности (на нагрев резины) PKV.

|              |         | Таблица 3 |
|--------------|---------|-----------|
| № порядка    | 1       | 2         |
| Nрез, об/мин | 500.91  | 250.45    |
| b            | 6.34    | 7.52      |
| А1, рад      | 0.00244 | 0.00024   |
| Ме, Нм       | 1425.7  | 141       |
| Мдоп, нм     | 12000   | 12000     |
| PKV          | 0.037   | 0.00036   |
| РКУдоп       | 0.87    | 0.87      |



Фрагмент 4



Отметим, что в фирменном отчете приводятся результаты расчета этих параметров, но без методических пояснений. Поэтому принципиальное значение имело сравнение этих результатов с нашими расчетами по новой методике и программе с целью проверки эффективности последних.

В первую очередь рассмотрим табличные (табл. 3) и графические параметры (фрагмент 4) нагрузки от крутильных колебаний в упругой муфте, полученные по нашему расчету. Из этих данных следует, что эти нагрузки намного меньше допустимых (по данным фирмы Вулкан) и не представляют опасности для муфты.

Аналогичные выводы следуют и относительно нагрузок в зубчатых зацеплениях (фрагмент 5 и табл. 4).

| Таблица | 4 |  |
|---------|---|--|
|---------|---|--|

| Элемент                       | № порядка      | Параметр      | Величина  | Допуск |
|-------------------------------|----------------|---------------|-----------|--------|
|                               | 1              | Эл. Мом., КНм | 1.197     | 5.73   |
| Зубчатое                      | И Момент (КНм) | Момент (КНм)  | 4.8±1.19  | 19.1   |
| зацепление (№ 11)             | 2              | Эл. Мом., КНм | 0.12      | 5.73   |
|                               |                | Момент (КНм)  | 4.8±1.2   | 19.1   |
| 0.5.5.5                       |                | Эл. Мом., КНм | 1.363     | 7.88   |
| Зуочатое<br>за⊔епление (№ 18) | 1              | Момент (КНм)  | 6.59±1.36 | 26.27  |
|                               | 2              | Эл. Мом., КНм | 0.134     | 7.88   |
|                               | Z              | Момент (КНм)  | 1.2±0.13  | 19.1   |

Следует с удовлетворением отметить, хорошее совпадение наших расчетов не только частот свободных колебаний, но и приведенных выше нагрузок в муфте и зубчатых зацеплениях.

В таблице 5 приведено сравнение расчетов для параметров крутильных колебаний лопастного порядка №1.

Таблица 5

| Элемент Параметр |               | Расчет фирмы | Наш расчет | %   |
|------------------|---------------|--------------|------------|-----|
| Nº 3             | Эл. Мом., КНм | 1.353        | 1.426      | 5.1 |
|                  | PKV           | 0.035        | 0.037      | 5.4 |
| Nº 11            | Эл. Мом., КНм | 1.082        | 1.197      | 8.8 |
| Nº 18            | Эл. Мом., КНм | 1.306        | 1.363      | 4.2 |

Заключение.

1. Выполненное исследование позволило во первых выявить особенности расчета крутильных колебаний ВРК с электрическим приводом, а во вторых – подтвердить эффективность и универсальность разработанных программ для экспертизы подобных расчетов Регистром.

2. К наиболее важным выводам из фирменного расчета крутильных колебаний ВРК, которые целесообразно было учесть при разработке новой программы, можно отнести:

- Выполнение расчетов не напряжений в валах, а эластических моментов для упругой муфты и зубчатых зацеплений, а так же потери мощности на нагрев резины упругой муфты;
- Учет в качестве основных возмущающих моментов гармоник первого и второго лопастных порядков от гребного винта, приведенных к частоте вращения электродвигателя;

- Учет при оценке опасности крутильных колебаний только свободные колебания одноузловой формы, поскольку резонансы от более высокочастотных форм колебаний выходят за пределы рабочекго диапазона оборотов электродвигателя;
- Использование для оценки упругих элементов между массами податливости, а не ее обратной величины – жесткости;
- Введение в схему системы вращающихся масс нулевых масс и бесконечных жесткостей (нулевых податливостей) для оценки нагрузки в шлицевых и зубчатых зацеплениях;
- При расчете жесткости упругой муфты не учитывается нелинейность ее характеристики (т.е. жесткость принята постоянной величиной при любом крутящем моменте);
- Применение при расчете векторных сумм колебаний различных порядков нулевых значений фазовых углов (алгебраическое сложение);
- Применение для расчета свободных колебаний метода Хольцера (HOLZER Analysis).

3.Выполненный расчет крутильных колебаний ВРК по нашей программе с применением метода Хольцера в редакторе МАТНСАD подтвердил ее корректность и универсальность. Это следует из сравнения результатов расчета с расчетными данными фирмы Вулкан. Таблица 1 показывает, что различие в частотах свободных колебаний составило сотые доли процента и является естественным фактом, поскольку оба расчета базируются на одной и той же классической теории свободных колебаний упругих систем.

Более важно отметить хорошее совпадение результатов расчета амплитуд и нагрузок в элементах системы от резонансных колебаний лопастных порядков. Положительным явлением можно считать наличие информации о возмущающих моментах лопастных порядков гребного винта, которые были однозначно использованы в наших расчетах. Отмечается одинаковый подход к суммированию гармоник разных порядков при нулевом сдвиге по фазе между гармониками.

Однако были не ясные вопросы по способам учета демпфирования и назначения эмпирических коэффициентов. Мы имеем собственную методику учета коэффициентов демпфирования [1], но в какой мере они согласуются с фирменной методикой было не известно. Поэтому данные таблицы 5 позволяет сделать заключение о достоверности разработанной программы, ибо различие между расчетными величинами составило всего 5-9%, что является хорошим показателем при оценке амплитуд резонансных колебаний, когда допустимый разброс их значений может доходить до 30% и более [1].

Расчет амплитуд крутильных колебаний ВРК косвенно подтверждает корректность и универсальность принятой концепции учета демпфирования в системе и расчета резонансных и вынужденных крутильных колебаний для любых типов силовых установок, а не только для дизельных.

Использованная литература

1. Ефремов Л.В. Теория и практика исследований крутильных колебаний силовых установок с применением компьютерных технологий. — СПб.: Наука, 2007. — 276 с.

2. Истомин П. А. Крутильные колебания в судовых ДВС. Л.: Судостроение, 1968. 303 с.

3. Очков В.Ф. «Mathcad 14 для студентов, инженеров и конструкторов» BHV-Петербург, 2007 г. (ISBN 978-5-9775-0129-3).

4. Терских В.П. Крутильные колебания валопровода силовых установок. Судостроение. 1971. 300 с.

Для сборника МРС № 31 за 2008 г.